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Sensitivity analysis for multivalued

quasiequilibrium problems in metric

spaces: H�older continuity of solutions

Lam Quoc Anh · Phan Quoc Khanh

Abstract H�older continuity and uniqueness of the solutions of general multi-

valued vector quasiequilibrium problems in metric spaces are established. The

results are shown to be extensions of recent ones for equilibrium problems with

some improvements. Applications in quasivariational inequalities, vector quasi-

optimization and traffic network problems are provided as examples for others in

various optimization - related problems.

Keywords Multivalued vector quasiequilibrium problems · H�older continuity ·
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Quasioptimization

1 Introduction

The equilibrium problem, introduced by Blum and Oettli (1994) as a direct gen-
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eralization of variational inequalities and optimization problems, has been proved

to include many optimization - related problems. However, it does not contain

quasivariational inequalities. The origin of the latter is the paper of Bensoussan

et al. (1973) considering random impulse control problems and showing the need

to deal with constraint sets depending on the state variables. A natural extension

of the equilibrium problem to include quasivariational inequalities is the qua-

siequilibrium problem, which contains also various quasioptimization - related

problems. Up to now there have been a great deal of works devoted to all aspects

of quasiequilibrium problems like the solution existence, the sensitivity analysis

and stability, solving methods, the solution uniqueness, etc. For the sensitivity

anallysis ans stability we observe Bianchi and Pini (2003), Anh and Khanh (2004,

(JOTA) 2007 in press, submitted), which are devoted to semicontinuity of solu-

tion sets, and Ait Mansour and Riahi (2005), Anh and Khanh (2006, (JOGO)

online 2006) which investigate the H�older continuity of the unique solution of

equilibrium problems.

The aim of the present paper is to extend Ait Mansour and Riahi (2005)

and Anh and Khanh (2006 and (JOGO) online 06) to the case of general quasi-

equilibrium problems. When applying to quasivariational inequalities in reflexive

Banach spaces our result sharpens that of Adly et al. (in press). Since the so-

lution existence has been intensively studied, (see e.g., resent papers Giannessi

2000; Goh and Yang 1999; Hai and Khanh 2006, 2007, (JOTA) in press, Khaliq

2005 and references therein), we focalize our consideration on sensitivity analy-

sis assuming always that the solutions exist in a neighborhood of the reference

point.

The outline of the remainder of the paper is as follows. The rest of this
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section is devoted to explaining notions needed in the sequel. The main result

is established in Section 2 followed by several direct sequences. In Section 3 we

discuss applications of the main result.

Our notations are almost standard. We use ‖.‖ and d(., .) for the norm and

metric in any normed space and metric space, respectively, (the context makes it

clear what space is encountered). d(x, A) is the distance from x to subset A in

X. For a normed space X, X∗ is the topological dual and 〈., .〉 is the canonical

pair. R+ is the set of nonnegative real numbers. B(x, r) denotes the closed ball of

radius r ≥ 0 and centered at x in a metric space X. intC stands for the interior

of a subset C.

Throughout the paper if not stated otherwise, let X, Z, Λ,M and N be

metric spaces, Y be a metric linear space, A ⊆ X be a nonempty subset and

C ⊆ Y have intC 6= ∅. Let K : A × Λ → 2X be a multifunction with nonempty

values, a : A × N → 2Z and F : X × X × Z × M → 2Y be multifunctions. For

subsets A and B under consideration we adopt the notations

r1(A, B) means A ∩B 6= ∅;

r2(A, B) means A ⊆ B;

ϕ1(A) =
(
(−A) \ l(A)

)c
;

ϕ2(A) = (−intA)c,

where l(A) = A ∩ (−A) and (.)c is the complement of (.). For each r ∈ {r1, r2},

ϕ ∈ {ϕ1, ϕ2}, λ ∈ Λ, µ ∈ M and η ∈ N consider the following quasiequilibrium

problem:

(Prϕ) Find x̄ ∈ K(x̄, λ) and x̄∗ ∈ a(x̄, η) such that, for each y ∈ K(x̄, λ),

r
(
F (x̄, y, x̄∗, µ), ϕ(C)

)
.
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Let Srϕ(λ, µ, η) be the solution set of (Prϕ) corresponding to λ, µ and η. Note

that this problem statement is not quite explicit. However, it helps to unify the

statements and proofs of assertions for four problems, (Prϕ) represents for each

(λ, µ, η).

The following Hölder-related notions. are in use in the sequel.

Definition 1.1

(i) (Classical) A multifunctionG : X×Λ → 2X is said to be (l1.α1, l2. α2)−Hölder

at (x0, λ0) if there exist neighborhoods N of x0 and U of λ0 such that,

∀x1, x2 ∈ N , ∀λ1, λ2 ∈ U ,

G(x1, λ1) ⊆
{
x ∈ X | ∃z ∈ G(x2, λ2), d(x, z) ≤ l1d

α1(x1, x2)+l2d
α2(λ1, λ2)

}
.

(ii) (Anh and Khanh (2006)) G : X ×X → 2Y is called h.β−Hölder - strongly

pseudomonotone of the first type in S ⊆ X if, ∀x, y ∈ S : x 6= y,

[G(x, y) 6⊆ −intC] =⇒ [G(y, x) + hB
(
0, dβ(x, y)

)
⊆ −C], (1)

where h ≥ 0 and β > 0. G is called h.β−Hölder-strongly pseudomonotone

of the second type if (1) is replaced by

[G(x, y) ⊆ Y \ −intC] =⇒ [G(y, x) + hB
(
0, dβ(x, y)

)
⊆ −C].

(iii) (Bianchi and Schaible (1996)) Let f : X×X → R. f is called quasimonotone

in K ⊆ X, if, ∀x, y ∈ K : x 6= y,

[f(x, y) < 0] =⇒ [f(y, x) ≥ 0].

f is called h.β- H�older - strongly monotone in K ⊆ X if, ∀x, y ∈ K : x 6= y,

f(x, y) + f(y, x) + hdβ(x, y) ≤ 0.
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The following Hölder-related assumptions (cf. Anh and Khanh (JOGO)

online 06) will be essential for considering problem (Prϕ).

For the reference point (λ0, µ0, η0) ∈ Λ×M ×N , there are neighborhoods

U(λ0), V (µ0) and W (η0) of λ0, µ0 and η0, respectively, such that

(A1) ∀λ ∈ U(λ0), ∀µ1, µ2 ∈ V (µ0), ∀x, y ∈ E(λ) := {x ∈ A | x ∈ K(x, λ)} :

x 6= y, ∀x∗1, x∗2 ∈ a
(
E(λ), W (η0)

)
,

F (x, y, x∗1, µ1) ⊆ F (x, y, x∗2, µ2)+B
(
0, dθ(x, y)

(
n3d

δ3(x∗1, x
∗
2)+n4d

δ4(µ1, µ2)
))

,

where n3, n4, δ3, δ4 and θ are nonnegative real numbers.

(A2r1ϕ) ∀µ ∈ V (µ0), ∀η ∈ W (η0), ∀x, y ∈ E
(
U(λ0)

)
: x 6= y,

hdβ(x, y) ≤ inf
x∗∈a(x,η)

inf
g∈F (x,y,x∗,µ)

d
(
g, ϕ(C)

)
+ inf

y∗∈a(y,η)
inf

f∈F (y,x,y∗,µ)
d
(
f, ϕ(C)

)
, (2)

where h > 0, β > θ.

(A2r2ϕ) is (A2r1ϕ) with (2) replaced by

hdβ(x, y) ≤ inf
x∗∈A(x,η)

sup
g∈F (x,y,x∗,µ)

d
(
g, ϕ(C)

)
.

+ inf
y∗∈A(y,η)

sup
f∈F (y,x,y∗,µ)

d
(
f, ϕ(C)

)
.

Remark 1.1 These assumptions look seemingly complicated. But they are not

hard to be checked as shown by examples below. We now make their meanings

clearer.

(i) Assumption (A1) incorporates Hölder continuity with respect to state

variables x, y and to parameter µ (in connection also with parameters λ and η).
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As explained in Anh and Khanh ((JOGO) online 2006), this condition replaces

particular orthogonality and linearity of variational inequalities in Hilbert spaces

to ensure the H�older continuity of the solution (see Theorem 2.1).

(ii) When ϕ = ϕ2, assumptions (A2rϕ2) become assumptions (A2a) and

(A2b) in Anh- Khanh ((JOGO) online 2006).

(iii) To explain Assumption (A2rϕ) we consider a single-valued real func-

tion (without parameters) f : X×X → R for the sake of simplicity. Then the four

assumptions (A2rϕ) collapse to the following assumption: ∀x, y ∈ K ⊆ X : x 6= y,

hdβ(x, y) ≤ d
(
f(x, y), R+

)
+ d

(
f(y, x), R+

)
. (3)

We have the following relation.

Proposition 1.1 (Anh and Khanh ((JOGO) online 2006), Proposition 1.1).

(i) If f : X×X → R satisfies (3) then f is h.β−Hölder-strongly pseudomonotone

in K (the two types defined in Definition 1.1 (ii) coincide in this case).

Conversely, if f is h.β−Hölder-strongly pseudomonotone in K and quasi-

monotone in K, then f satisfies (3).

(ii) If f : X × X → R is h.β−Hölder-strongly monotone in K ⊆ X, then f

satisfies (3).

Examples 1.1 and 1.2 in Anh and Khanh ((JOGO) online 2006) interpret

the lacking implications in Proposition 1.1.

In this paper we use mainly the following distance, for C, D ⊆ X,

ρ(C, D) = sup
x∈C,y∈D

d(x, y).

To compare the results we recall that the Hausdorff distance H(C, D) and the
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r-Hausdorff distance (see Attouch and Wets (1991)) Hr(C, D) are defined as

H(C, D) = max{sup
x∈C

d(x, D), sup
y∈D

d(y, C)},

Hr(C, D) = max{ sup
x∈C∩B(0,r)

d(x, D), sup
y∈D∩B(0,r)

d(y, C)}.

It is easy to see that the function r 7→ Hr is increasing and ∀C, D ⊆ X,

ρ(C, D) ≥ H(C, D) = lim
r→+∞

Hr(C, D),

and, ∀r > 0,

ρ(C, D) ≥ H(C, D) ≥ Hr(C, D).

2 The main result

Theorem 2.1 For problem (Prϕ) assume that solutions exist in a neighborhood

of the considered point (λ0, µ0, η0) ∈ Λ × M × N and the assumptions (A1) and

(A2rϕ) are satisfied. Assume further that

(i) K(., .) is (l1.α1, l2.α2)−Hölder in E(U(λ0))× λ0;

(ii) ∀(λ, µ, η) ∈ U(λ0)×V (µ0)×W (η0), ∀x ∈ E(λ), ∀x∗ ∈ a(x, η), F (x, ., x∗, µ)

is n2.δ2−Hölder in K
(
U(λ0), λ

)
;

(iii) ∀x ∈ E(U(λ0)), a(x, .) is m.γ−Hölder at η0;

(iv) α1δ2 = β, h > 2n2l
δ2
1 , β > θ.

Then, the solution x(λ, µ, η) of (Prϕ) is unique in a neighborhood of (λ0, µ0, η0)

and satisfies the following condition

d
(
x(λ1, µ1, η1), x(λ2, µ2, η2)

)
≤ k1d

α2δ2/β(λ1, λ2) + k2d
δ4/(β−θ)(µ1, µ2)

+k3d
γδ3/(β−θ)(η1, η2),
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where k1, k2 and k3 are positive constants depending on h, β, n2, n3, n4, θ, l1, l2, ...

Proof Since r ∈ {r1, r2} and ϕ ∈ {ϕ1, ϕ2}, we have in fact four cases corre-

sponding to four different combinations of values of r and ϕ. However, the proof

techniques are similar. We consider only the case where r = r1 and ϕ = ϕ2. Let

λ1, λ2 ∈ U(λ0), µ1, µ2 ∈ V (µ0) and η1, η2 ∈ W (η0).

Step 1 We prove that, ∀x(λ1, µ1, η1) ∈ Sr1ϕ2(λ1, µ1, η1), ∀x(λ1, µ2, η1) ∈ Sr1ϕ2(λ1,

µ2, η1),

d1 := d
(
x(λ1, µ1, η1), x(λ1, µ2, η1)

)
≤

(
n4

h− 2n2l
δ2
1

)1/(β−θ)

dδ4/(β−θ)(µ1, µ2).

Let x(λ1, µ1, η1) 6= x(λ1, µ2, η1) (if the equality holds then we are done). As

x(λ1, µ1, η1) ∈ K(x(λ1, µ1, η1), λ1), x(λ1, µ2, η1) ∈ K(x(λ1, µ2, η1), λ1) and K(., .)

is H�older continuous, there are x1 ∈ K(x(λ1, µ1, η1), λ1) and x2 ∈ K(x(λ1, µ2,

η1), λ1) such that

d
(
x(λ1, µ1, η1), x2

)
≤ l1d

α1
(
x(λ1, µ1, η1), x(λ1, µ2, η1)

)
, (4)

d
(
x(λ1, µ2, η1), x1

)
≤ l1d

α1
(
x(λ1, µ1, η1), x(λ1, µ2, η1)

)
. (5)

Since x(λ1, µ1, η1) and x(λ1, µ2, η1) are solutions of (Pr1ϕ2), there exist x∗1 ∈

a(x(λ1, µ1, η1), η1) and x∗2 ∈ a(x(λ1, µ2, η1), η1) such that

∃z1 ∈ F (x(λ1, µ1, η1), x1, x
∗
1, µ1) ∩ (Y \ −intC), (6)

∃z2 ∈ F (x(λ1, µ2, η1), x2, x
∗
2, µ2) ∩ (Y \ −intC). (7)

Assumption (A2r1ϕ2) implies that

inf
x∗∈a(x(λ1,µ1,η1),η1)

inf
g∈F (x(λ1,µ1,η1),x(λ1,µ2,η1),x∗,µ1)

d(g, Y \ −intC)

+ inf
x∗∈a(x(λ1,µ2,η1),η1)

inf
f∈F (x(λ1,µ2,η1),x(λ1,µ1,η1),x∗,µ1)

d(f, Y \ −intC) ≥ hdβ
1 .
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By (6) and (7), we have

inf
g∈F (x(λ1,µ1,η1),x(λ1,µ2,η1),x∗1,µ1)

d(g, z1) + inf
f∈F (x(λ1,µ2,η1),x(λ1,µ1,η1),x∗2,µ1)

d(f, z2) ≥ hdβ
1 .

Hence,

H
(
F (x(λ1, µ1, η1), x1, x

∗
1, µ1), F (x(λ1, µ1, η1), x(λ1, µ2, η1), x

∗
1, µ1)

)
+H

(
F (x(λ1, µ2, η1), x2, x

∗
2, µ2), F (x(λ1, µ2, η1), x(λ1, µ1, η1), x

∗
2, µ1)

)
≥ hdβ

1 ,

where H(., .) is the Hausdorff distance. Consequently,

H
(
F (x(λ1, µ1, η1), x1, x

∗
1, µ1), F (x(λ1, µ1, η1), x(λ1, µ2, η1), x

∗
1, µ1)

)
+H

(
F (x(λ1, µ2, η1), x2, x

∗
2, µ2), F (x(λ1, µ2, η1), x(λ1, µ1, η1), x

∗
2, µ2)

)
+H

(
F (x(λ1, µ2, η1), x(λ1, µ1, η1), x

∗
2, µ2), F (x(λ1, µ2, η1), x(λ1, µ1, η1), x

∗
2, µ1)

)
≥ hdβ

1 .

By assumption (A1) and (ii), one has

n2d
δ2(x1, x(λ1, µ2, η1)) + n2d

δ2(x2, x(λ1, µ1, η1)) + n4d
θ
1d

δ4(µ1, µ2) ≥ hdβ
1 .

Now (4) and (5) imply that

n2l
δ2
1 dα1δ2

1 + n2l
δ2
1 dα1δ2

1 + n4d
θ
1d

δ4(µ1, µ2) ≥ hdβ
1 .

Then assumption (iv) yields that

dβ−θ
1 ≤

(
n4

h− 2n2l
δ2
1

)
dδ4(µ1, µ2).

Setting k1 =
(

n4

h−2n2l
δ2
1

) 1
β−θ

, we have

d1 ≤ k1d
δ4

β−θ (µ1, µ2).
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Step 2 Now we show that, ∀x(λ1, µ2, η1) ∈ Sr1ϕ2(λ1, µ2, η1),∀x(λ2, µ2, η1) ∈

Sr1ϕ2(λ2, µ2, η1),

d2 := d
(
x(λ1, µ2, η1), x(λ2, µ2, η1)

)
≤

(
2n2l

δ2
2

h− 2n2l
δ2
1

)1/β

dα2δ2/β(λ1, λ2).

As before we can assume that x(λ1, µ2, η1) 6= x(λ2, µ2, η1). Thanks to (i) we have

x′1 ∈ K(x(λ2, µ2, η1), λ1) and x′2 ∈ K(x(λ1, µ2, η1), λ2) such that

d
(
x(λ1, µ2, η1), x

′
2

)
≤ l2d

α2(λ1, λ2), (8)

d
(
x(λ2, µ2, η1), x

′
1

)
≤ l2d

α2(λ1, λ2). (9)

By the Hölder continuity of K(., .) there are x′′1 ∈ K(x(λ1, µ2, η1), λ1) and x′′2 ∈

K(x(λ2, µ2, η1), λ2),

d(x′1, x
′′
1) ≤ l1d

α1
(
x(λ1, µ2, η1), x(λ2, µ2, η1)

)
, (10)

d(x′2, x
′′
2) ≤ l1d

α1
(
x(λ1, µ2, η1), x(λ2, µ2, η1)

)
. (11)

By the definition of (Pr1ϕ2), x
′′∗
1 ∈ a(x(λ1, µ2, η1), η1) and x′′∗2 ∈ a(x(λ2, µ2, η1), η1)

exist such that one can find

z′1 ∈ F (x(λ1, µ2, η1), x
′′
1, x

′′∗
1 , µ2) ∩ (Y \ −intC), (12)

z′2 ∈ F (x(λ2, µ2, η1), x
′′
2, x

′′∗
2 , µ2) ∩ (Y \ −intC). (13)

It follows from assumption (A2r1ϕ2) that

inf
x∗∈a(x(λ1,µ2,η1),η1)

inf
g∈F (x(λ1,µ2,η1),x(λ2,µ2,η1),x∗,µ2)

d(g, Y \ −intC)

+ inf
x∗∈a(x(λ2,µ2,η1),η1)

inf
f∈F (x(λ2,µ2,η1),x(λ1,µ2,η1),x∗,µ2)

d(f, Y \ −intC) ≥ hdβ
2 .

(12) and (13)then imply that

inf
g∈F (x(λ1,µ2,η1),x(λ2,µ2,η1),x′′∗1 ,µ2)

d(g, z′1) + inf
f∈F (x(λ2,µ2,η1),x(λ1,µ2,η1),x′′∗2 ,µ2)

d(f, z′2) ≥ hdβ
2 .
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Consequenly,

H
(
F (x(λ1, µ2, η1), x

′′
1, x

′′∗
1 , µ2), F (x(λ1, µ2, η1), x(λ2, µ2, η1), x

′′∗
1 , µ2)

)
+H

(
F (x(λ2, µ2, η1), x

′′
2, x

′′∗
2 , µ2), F (x(λ2, µ2, η1), x(λ1, µ2, η1), x

′′∗
2 , µ2)

)
≥ hdβ

2 .

and hence

H
(
F (x(λ1, µ2, η1), x

′′
1, x

′′∗
1 , µ2), F (x(λ1, µ2, η1), x

′
1, x

′′∗
1 , µ2)

)
+H

(
F (x(λ1, µ2, η1), x

′
1, x

′′∗
1 , µ2), F (x(λ1, µ2, η1), x(λ2, µ2, η1), x

′′∗
1 , µ2)

)
+H

(
F (x(λ2, µ2, η1), x

′′
2, x

′′∗
2 , µ2), F (x(λ2, µ2, η1), x

′
2, x

′′∗
2 , µ2)

)
+H

(
F (x(λ2, µ2, η1), x

′
2, x

′′∗
2 , µ2), F (x(λ2, µ2, η1), x(λ1, µ2, η1), x

′′∗
2 , µ2)

)
≥ hdβ

2 .

The Hölder continuity of F assumed in (ii) implies that

n2d
δ2(x′′1, x

′
1) + n2d

δ2(x′1, x(λ2, µ2, η1)) + n2d
δ2(x′′2, x

′
2)

+n2d
δ2(x′2, x(λ1, µ2, η1)) ≥ hdβ

2 .

From (8), (9), (10) and (11) we have

n2l
δ2
1 dα1δ2

2 + n2l
δ2
2 dα2δ2(λ1, λ2) + n2l

δ2
1 dα1δ2

2 + n2l
δ2
2 dα2δ2(λ1, λ2) ≥ hdβ

2 .

It follows from assumption (iv) that

dβ
2 ≤

(
2n2l

δ2
2

h− 2n2l
δ2
1

)
dα2δ2(λ1, λ2).

Taking k2 =
(

2n2l
δ2
2

h−2n2l
δ2
1

) 1
β

, one has

d2 ≤ k2d
α2δ2

β (λ1, λ2).

Step 3 We check the inequality, ∀x(λ2, µ2, η1) ∈ Sr1ϕ2(λ2, µ2, η1), ∀x(λ2, µ2,

η2) ∈ Sr1ϕ2(λ2, µ2, η2),

d3 := d
(
x(λ2, µ2, η1), x(λ2, µ2, η2)

)
≤

(
n3m

δ3

h− 2n2l
δ2
1

) 1
β−θ

d
γδ3
β−θ (η1, η2).
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Assume that x(λ2, µ2, η1) 6= x(λ2, µ2, η2). It follows from (i) the existence of x′′′1 ∈

K(x(λ2, µ2, η1), λ2) and x′′′2 ∈ K(x(λ2, µ2, η2), λ2) such that

d
(
x(λ2, µ2, η1), x

′′′
2

)
≤ l1d

α1
3 , (14)

d
(
x(λ2, µ2, η2), x

′′′
1

)
≤ l1d

α1
3 . (15)

Since x(λ1, µ1, η1) and x(λ1, µ2, η1) are solutions of (Pr1ϕ2), there exist x′′′∗1 ∈

a(x(λ2, µ2, η1), η1) and x′′′∗2 ∈ a(x(λ2, µ2, η2), η2) such that we have

z′′1 ∈ F (x(λ2, µ2, η1), x
′′′
1 , x′′′∗1 , µ2) ∩ (Y \ −intC), (16)

z′′2 ∈ F (x(λ2, µ2, η2), x
′′′
2 , x′′′∗2 , µ2) ∩ (Y \ −intC). (17)

Assumption (A2r1ϕ2) implies that

inf
x∗∈a(x(λ2,µ2,η1),η1)

inf
g∈F (x(λ2,µ2,η1),x(λ2,µ2,η2),x∗,µ2)

d(g, Y \ −intC)

+ inf
x∗∈a(x(λ2,µ2,η2),η1)

inf
f∈F (x(λ2,µ2,η2),x(λ2,µ2,η1),x∗,µ2)

d(f, Y \ −intC) ≥ hdβ
3 . (18)

Since x′′′2 ∈ a(x(λ2, µ2, η2), η2), by (iii) there exists x∗1 ∈ a(x(λ2, µ2, η2), η1) such

that

d(x′′′2 , x∗1) ≤ mdγ(η1, η2). (19)

It follows from (18) that

inf
g∈F (x(λ2,µ2,η1),x(λ2,µ2,η2),x′′′∗1 ,µ2)

d(g, Y \ −intC)

+ inf
f∈F (x(λ2,µ2,η2),x(λ2,µ2,η1),x∗1,µ2)

d(f, Y \ −intC) ≥ hdβ
3 .

From (16) and (17) one has

inf
g∈F (x(λ2,µ2,η1),x(λ2,µ2,η2),x′′′∗1 ,µ2)

d(g, z′′1 ) + inf
f∈F (x(λ2,µ2,η2),x(λ2,µ2,η1),x∗1,µ2)

d(f, z′′2 ) ≥ hdβ
3 .

Hence

H
(
F (x(λ2, µ2, η1), x

′′′
1 , x′′′∗1 , µ2), F (x(λ2, µ2, η1), x(λ2, µ2, η2), x

′′′∗
1 , µ2)

)
12



+H
(
F (x(λ2, µ2, η2), x

′′′
2 , x′′′∗2 , µ2), F (x(λ2, µ2, η2), x(λ2, µ2, η1), x

∗
1, µ2)

)
≥ hdβ

3 ,

and then

H
(
F (x(λ2, µ2, η1), x

′′′
1 , x′′′∗1 , µ2), F (x(λ2, µ2, η1), x(λ2, µ2, η2), x

′′′∗
1 , µ2)

)
+H

(
F (x(λ2, µ2, η2), x

′′′
2 , x′′′∗2 , µ2), F (x(λ2, µ2, η2), x(λ2, µ2, η1), x

′′′∗
2 , µ2)

)
+H

(
F (x(λ2, µ2, η2), x(λ2, µ2, η1), x

′′′∗
2 , µ2), F (x(λ2, µ2, η2), x(λ2, µ2, η1), x

∗
1, µ2)

)
≥ hdβ

3 .

Assumptions (A1) and (ii) together imply that

n2d
δ2(x′′′1 , x(λ2, µ2, η2)) + n2d

δ2(x′′′2 , x(λ2, µ2, η1)) + n3d
θ
3d

δ3(x′′′∗2 , x∗1) ≥ hdβ
3 .

From (14), (15) and (19), we obtain

n2l
δ2
1 dα1δ2

3 + n2l
δ2
1 dα1δ2

3 + n3m
δ3dθ

3d
γδ3(η1, η2) ≥ hdβ

3 .

Assumption (iv) now yields that

dβ−θ
3 ≤

(
n3m

δ3

h− 2n2l
δ2
1

)
dγδ3(η1, η2).

Setting k3 =
(

n3mδ3

h−2n2l
δ2
1

) 1
β−θ

, we have

d3 ≤ k3d
γδ3
β−θ (µ1, µ2).

Step 4 Finally since, ∀x(λ1, µ1, η1) ∈ Sr1ϕ2(λ1, µ1, η1), ∀x(λ2, µ2, η2) ∈ Sr1ϕ2(λ2,

µ2, η2)

d
(
x(λ1, µ1, η1), x(λ2, µ2, η2)

)
≤ d1 + d2 + d3,

we have

ρ
(
Sr1ϕ2(λ1, µ1, η1), Sr1ϕ2(λ2, µ2, η2)

)
≤ d1 + d2 + d3.

Putting (λ1, µ1, η1) = (λ2, µ2, η2) from this inequality one sees that Sr1ϕ2(λ1, µ1, η1)

is a singleton. Similarly, Sr1ϕ2(λ2, µ2, η2) is also a singleton. Thus (Pr1ϕ2) has a

unique solution in a neighborhood of (λ0, µ0, η0) and then the H�older condition

concluded in the theorem is obtained. �
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Remark 2.1 In the case of equilibrium problems considered in Anh and Khanh

((JOGO) online 2006), generalized monotonicity assumptions corresponding to

(A2rϕ) ensure directly the solution uniqueness. However, for quasiequilibrium

problems the above proof shows that this uniqueness is obtained by invoking all

the assumptions together.

Examples 2.1 in Anh and Khanh ((JOGO) online) shows that assumptions

(A2rϕ) are essential even in the special case where K depends only on λ.

Now we discuss some consequences of Theorem 2.1 for this special case, i.e.

problems (Prϕ) becomes the corresponding equilibrium problem denoted by (Erϕ).

When r = r1, ϕ = ϕ2 and r = r2, ϕ = ϕ2, Theorem 2.1 becomes Theorems 2.1 and

2.2, respectively, of Anh and Khanh ((JOGO) online 2006) and sharpens Theo-

rems 2.1 and 2.2, respectively, of Anh and Khanh (2006). To see this sharpening

see Examples 2.4-2.6 in Anh and Khanh ((JOGO) online 2006). Note that the

cases where r = r1, ϕ = ϕ1 or r = r2, ϕ = ϕ1 are new even for the special case of

(Erϕ). In addition, if a(x, η) ≡ {x} and F (x, y, x∗, µ) = F (x, y, µ) is single-valued,

the special case of Theorem 2.1 improves Theorem 4.2 of Bianchi and Pini (2003)

and Theorem 2.2.1 of Ait Mansour and Riahi (2005) (see also Examples 2.4 - 2.8

of Anh and Khanh ((JOGO) online 2006) for detailed comparisons).

3 Applications

We will now apply the main result in Section 2 to some problems of importance.

Since quasiequilibrium problems include also many other problems, our result can

clearly imply consequences for them.
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3.1 Multivalued quasivariational inequalities

In this subsection, if not stated otherwise, let X be a reflexive Banach space,

N and Λ be metric linear spaces, and A ⊆ X be a nonempty subset. Let

K : A × Λ → 2X and a : A × N → 2X∗
be multifunctions with K(x, λ) be-

ing closed and convex, ∀(x, λ) ∈ A × Λ. For each (λ, η) ∈ Λ × N consider the

quasivariational inequality problem

(QVI) Find x̄ ∈ K(x̄, λ) such that ∃t̄ ∈ a(x̄, η), ∀y ∈ K(x̄, λ),

〈t̄, y − x̄〉 ≥ 0.

For each (λ, η) ∈ Λ × N , by Svi(λ, η) we denote the solution set of (QVI)

at (λ, η).

To convert (QVI) to a special case of (Prϕ) set Z = X∗, Y = R, C = R+

and F (x, y, x∗) = 〈x∗, y − x〉.

Corollary 3.1 For (QVI) assume the solution existence in a neighborhood of

(λ0, η0) ∈ Λ×N . Assume further that there are neighborhoods U(λ0) of λ0, W (η0)

of η0 such that we have (i), (iii) of Theorem 2.1 and

(A2) ∀η ∈ W (η0),∀x, y ∈ E(U(λ0)) : x 6= y,

h‖x− y‖β ≤ inf
g∈〈a(x,η),y−x〉

d(g,R+) + inf
f∈〈a(y,η),x−y〉

d(f, R+);

(a) a is bounded in E(U(λ0)) × {η0} : ‖a(x, η)‖ ≤ n2,∀x ∈ E(U(λ0)),∀η ∈

W (η0) and E(U(λ0)) is bounded;

(b) α1 = β, h > 2n2l1.

Then the solution x(λ, η) of (QVI) is unique in a neighborhood of (λ0, η0) and
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satisfies the H�older condition

‖x(λ1, η1)− x(λ2, η2)‖ ≤ k1d
α2/β(λ1, λ2) + k2d

γ/β(µ1, µ2).

Proof We simply check the assumptions of Theorem 2.1, except (i) and (iii).

(A2rϕ) collapses to (A2) in this special case. For (A1) we see that

|F (x, y, x∗1)− F (x, y, x∗2)| = |〈x∗1, y − x〉 − 〈x∗2, y − x〉|

≤ ‖y − x‖‖x∗1 − x∗2‖ ≤ n1‖x∗1 − x∗2‖.

Hence (A1) is fulfilled with n3 = n1, δ3 = 1 and θ = n4 = δ4 = 0. Since

‖a(x, η)‖ ≤ n2 in E(U(λ0)) × W (η0), assumption (ii) is satisfied with n2 and

δ2 = 1. Assumption (iv) becomes (b) in this case. �

Remark 3.1 Let x̄ = x(λ̄, µ̄) be the solution of the variational inequality (VI)

corresponding to (QVI), i.e. when K does not depend on x. Using similar argu-

ments, Corollary 3.1 can be proved when replacing assumption (i) by the follow-

ing Aubin property (known also as pseudo-Lipschitz property) of K around (x̄, λ̄)

(but we have to add the maximal monotonicity of a(., η)): there exist neighbor-

hoods P of x̄, V(λ̄) of λ̄ and k > 0 such that, ∀λ1, λ2 ∈ V(λ̄),

K(λ1) ∩ P ⊆ K(λ2) + lB
(
0, d(λ1, λ2)

)
.

Indeed, by classical arguments of existence theory for variational inequalities (cf.

Anh and Khanh (JOGO) online 2006), we can consider that the solution x(λ, η)

to (VI) belongs to K(λ̄) ∩ P . Note that in this case l1 = 0 and α1 is arbitrary so

we take α1 = β and hence α1.δ2 = β > 1. Furthermore, in this case assumption

(a) of Corollary 3.1 requires only a to be bounded in E(U(λ0))×{η0} (E(U(λ0))

needs not to be bounded) and hence assumption (A1) will be satisfied with n3 =

16



δ3 = θ = 1 and n4 = δ4 = 0. Namely we have the following consequence.

Corollary 3.2 For (VI) assume the existence a neighborhood U(λ0) × W (η0)

of (λ0, η0) ∈ Λ × N such that assumptions (iii) and (A2) of Corollary 3.1 are

satisfied and assume further that

(i') there is a neighborhood P of the solution x(λ0, η0) such that, ∀λ, λ′ ∈ U(λ0),

K(λ) ∩ P ⊆ K(λ′) + lB
(
0, dα(λ, λ′)

)
(i.e. K(.) is l.α−pseudo-Hölder at λ0);

(a') a is bounded in K
(
U(λ0)

)
× {η0} and ∀η ∈ W (η0), a(., η) is maximal

monotone;

(b') β > 1.

Then, in a neighborhood of (λ0, η0), the solution x(λ, η) of (VI) is unique and

satisfies the Hölder condition

‖x(λ1, η1)− x(λ2, η2)‖ ≤ k1d
α/β(λ1, λ2) + k2d

ξ/(β−1)(η1, η2).

In the case where a is single - valued, Corollary 3.2 implies the following

result

Corollary 3.3 For (VI) assume that a is single - valued, x0 := x(λ0, η0) is a

solution of (VI) at (λ0, η0) and that there is a neighborhood U(λ0) × W (η0) of

(λ0, η0) such that

(A2') a(., η) is strongly monotone for each η ∈ W (η0);

(i') K(.) is pseudo-Lipschitz in U(λ0);

(iii') a(., .) is Lipschitz in P (x0)×W (η0).

17



Then, in a neighborhood of (λ0, η0), the unique solution of (VI) satisfies the Hölder

condition

‖x(λ1, η1)− x(λ2, η2)‖ ≤ k1d
1/2(λ1, λ2) + k2d(η1, η2).

Proof We check the assumptions of Corollary 3.1. (i') holds with α = 1. (A2)

is satisfied with β = 2 by (A2'). (iii) is fulfilled with γ = 1 by (iii'). For (a') we

see that a is bounded since a(., .) is Lipschitz continuous and a(., η) is monotone;

furthermore, since a(., .) is single-valued and a(., η) is monotone and demicon-

tinuous, a(., η) is maximal monotone by Lemma 2.13 of Kluges (1979). Finally,

assumption (b') is clearly satisfied. �

If X is a Hilbert space Corollary 3.3 collapses to Theorem 2.1 of Yen (1995).

Remark 3.2 As shown by Proposition 1.1, if a is single-valued, assumption (A2)

is more relaxed than the h.β-H�older-strong monotonicity of a(., η) in E(U(λ0)),

∀η ∈ W (λ0). When a is single-valued and K(x, λ) is of a special linear form

defined by the travel demands in a traffic network problem (see Subsection 3.2),

our problem (QVI) is reduced to the problem investigated in Adly et al. (in

press). Theorem 5.1, the main result there, under assumptions similar to that of

Corollary 3.1 with the mentioned monotonicity of a(., η) replacing (A2), is weaker

than Corollary 3.1 when β = 2 since the distance Hr(C, D) is used instead of

ρ(C, D), and hence the solution uniqueness is not established.

3.2 A vector quasioptimization problem

Let X, Y, Λ, N, C and K be as for problem (Prϕ) in Section 1 and D : X×N → 2Y

be a multifunction. For each (λ, η) ∈ Λ×N , consider the following problem of
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(VOPϕ) finding x̄ ∈ K(x̄, λ) and x̄∗ ∈ D(x̄, η) such that, ∀y ∈ K(x̄, λ),

D(y, η)− x̄∗ ⊆ ϕ(C).

Recall that when K does not depend on x and ϕ = ϕ2 such a point x̄ is said to be

a weak minimizer and x̄∗ is a weak minimum of the vector optimization problem

min D(y, η), s.t. y ∈ K(λ),

and when K does not depend on x and ϕ = ϕ1 such a point x̄ is called an efficient

minimizer and x̄∗ is a Pareto minimum, i.e., there is no y ∈ D(x̄, η) such that

y − x∗ ∈ (−C) \ l(C),

where l(C) = C ∩ (−C). Since the constraint set K here depends also on x, we

have a quasioptimization problem.

To convert (VOPϕ) to a special case of (Pr2ϕ) we simply set Z = Y,M ≡ N

and F (x, y, x∗, η) = D(y, η) − x∗. Then, from Theorem 2.1 we have (cf. also the

proof of Theorem 2.1).

Corollary 3.4 For (VOPϕ) assume that solutions exist in a neighborhood of

(λ0, η0) ∈ Λ × N . Assume further that there are neighborhoods U(λ0) of λ0 and

W (η0) of η0 such that

(A1) ∀λ ∈ U(λ0),∀η1, η2 ∈ W (η0),∀y ∈ E(λ), ∀x∗1, x∗2 ∈ D
(
E(λ), W (η0)

)
,

D(y, η1)− x∗1 ⊆ D(y, η2)− x∗2 + ‖y‖θB
(
0, n3‖x∗1 − x∗2‖+ n4d

δ4(η1, η2)
)
,

where n3, n4 > 0, θ ≥ 0 and δ4 > 0;

(A2ϕ) ∀η ∈ W (η0),∀x, y ∈ E(U(λ0)) : x 6= y,

hdβ(x, y) ≤ inf
x∗∈D(x,η)

sup
g∈D(y,η)−x∗

d
(
g, ϕ(C)

)
+ inf

y∗∈D(y,η)
sup

f∈D(x,η)−y∗
d
(
f, ϕ(C)

)
,

for h > 0 and β > θ;
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(i) K(., .) is (l1.α1, l2.α2)−Hölder at λ0;

(ii) ∀η ∈ W (η0), D(., η) is n2.δ2− Hölder in E(U(λ0));

(iii) ∀λ ∈ U(λ0),∀y ∈ E(λ), D(y, .) is m.γ Hölder at η0.

Then, in a neighborhood of (λ0, η0), the solution x(λ, η) of (VOPϕ), is unique and

satisfies the following condition

d
(
x(λ1, η1), x(λ2, η2)

)
≤ k1d

α2δ2/β(λ1, λ2) + k2d
τ/(β−θ)(η1, η2),

where τ := min{δ4, γ}, k1 and k2 are positive constants depending on h, β,m, θ, ...

3.3 Applications to traffic network problems

Wardrop (1952) introduced a notion of equilibrium flows for transportation net-

work problems and proved basic traffic network principles. Until now many con-

tributions have developed this research direction in various aspects. We would

notice some points in the development process. Smith (1979) began the varia-

tional approach by proving that the Wardrop equilibria are just solutions of vari-

ational inequalities corresponding to the traffic network problems. In De Luca

(1995) and Maugeri (1995) the travel demands of the problem was proposed to

depend on the equilibrium vector flows to meet the variety of practical situations.

These elastic demands led to the fact that the traffic problem corresponded to a

quasivariational (not variational) inequality. De Luca (1995) and Maugeri (1995)

considered the travel costs being multifunctions of the path flows. Khanh and

Luu (2004, 2005) extended the notion of Wardrop's traffic equilibria to this case.

Efforts have been devoted mainly to the solution existence. Resently, in Adly et

al. (in press), the stability of the problem in terms of the H�older continuity of the

solution sets with respect to the perturbing parameters is studied. Unfortunately,
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some assumptions are mistakenedly imposed and contradict each other and so

no problems satisfy them. In this subsection we apply the results in Section 2

to establish sharpened H�older continuity results for more general traffic network

problems with multivalued costs. We show also that the solution is locally unique.

We describe first our traffic problem. Let the network consist of nodes and

links (or arcs). Let W = (W1, ...,Wl) be the set of pairs, each of them consists of

an origin node and a destination node, (O/D pairs for short). Assume that Pj,

j = 1, ..., l, is the set of paths connecting the pair Wj and that Pj contains rj ≥ 1

paths. Let m = r1 + ... + rl and f = (f1, ..., fm) denote the path vector flow.

Giannessi proposed in Giannessi (1980) that restrictions of the capacity of the

paths must be considered. Hence we assume that the constraint of the capacity

of paths is of the form

A = {f ∈ Rm : γs ≤ fs ≤ Γs, s = 1, ...,m},

where γs and Γs are given nonnegative numbers. Let the cost vector T (f, µ) =

(T1(f, µ), ..., Tm(f, µ)) be a multifunction of flow f and perturbing parameter µ.

The generalization of the Wardrop equilibrium for the multivalued cost case is as

follows.

Definition 3.1 (i) A path vector flow f is said to be a weak equilibrium vector

flow if ∀Wj,∀q ∈ Pj,∀s ∈ Pj,∃t ∈ T (f, µ),

tq < ts =⇒ fq = Γq or fs = γs,

where j = 1, ..., l and q, s ∈ {1, ...,m} are among rj paths corresponding to

Pj.

(ii) A path vector flow f is called a strong equilibrium vector flow if (i) is

satisfied with ∃t ∈ T (f, µ) being replaced by ∀t ∈ T (f, µ).
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Assume further that the travel demand gj of the O/D pair Wj depends on

the equilibrium vector flow h as explained in De Luca (1995) and Maugeri (1995)

and also on a perturbing parameter λ ∈ Λ : gj(h, λ). Denote the travel vector

demand by g = (g1, ..., gl) and use the Kronecker numbers

φjs =

{
1, if s ∈ Pj,

0, if s /∈ Pj,

φ = {φjs}, j = 1, ..., l; s = 1, ...,m.

Then the set of all feasible path vector flows is

K(h, λ) = {f ∈ A | φz = g(h, λ)},

where φ is called the O/D pair - path incidence matrix.

Note that the traffic problem formulated in terms of path flow variables as

above needs not the additivity of the travel cost, i.e. a path cost may not be equal

to the sum of the link costs for all links involved in the path. For formulations

based on link variables such additivity must be assumed.

Observe that a feasible path flow vector f̄ is a weak (or strong) equilibrium

flow vector if f̄ is a solution of the following quasivariational inequality, respec-

tively, (see Khanh and Luu 2004):

(TNPr1) Find f̄ ∈ K(f̄ , λ) such that, ∀f ∈ K(f̄ , λ), ∃t̄ ∈ T (f̄ , µ),

〈t̄, f − f̄〉 ≥ 0.

(TNPr2) Find f̄ ∈ K(f̄ , λ) such that ∀f ∈ K(f̄ , λ), ∀t̄ ∈ T (f̄ , µ) such that

〈t̄, f − f̄〉 ≥ 0.

Lemma 3.5 (Proposition 5.1, Adly et al. (in press)) If g(., .) is (L1.α1, L2.α2)-

H�older at (x0, λ0) then there are l1, l2 such that K is (l1.α1, l2.α2)-H�older at
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(x0, λ0).

Setting X = Z = Rm, N ≡ Λ, Y = R, C = R+, a(x, λ) = Z and

F (h, f, h∗, µ) = 〈T (h, µ), f − h〉. Then our problems (Prϕ1) coincides with (Prα2);

(Pr1ϕ) and (Pr2ϕ) becomes (TNPr1) and (TNPr2), respectively. Hence we can de-

rive the H�older continuity of (TNPr1) and (TNPr2) from Theorem 2.1 as follows.

First note that, since in this case F (h, f, h∗, µ) does not depend on h∗ and

the problem is scalar (hence ϕ1 = ϕ2), assumptions (Ar1ϕ) and (Ar2ϕ) collapse to

the following assumptions, respectively,

(Ar1) ∀µ ∈ V (µ0), ∀x, y ∈ E(U(λ0)) : x 6= y,

h‖x− y‖β ≤ inf
g∈〈T (x,µ),y−x〉

d(g,R+) + inf
f∈〈T (y,µ),x−y〉

d(f, R+).

(Ar2) ∀µ ∈ V (µ0), ∀x, y ∈ E(U(λ0)) : x 6= y,

h‖x− y‖β ≤ sup
g∈〈T (x,µ),y−x〉

d(g,R+) + sup
f∈〈T (y,µ),x−y〉

d(f, R+).

Corollary 3.6 For (TNPr) assume that there are neighborhoods U(λ0) of λ0

and V (µ0) of µ0 such that assumption (Ar) is satisfied. Assume further that

(a) ∀f ∈ E(U(λ0)), T (f, .) is n.δ-Hölder at µ0 and T (., .) is bounded: ∀f ∈

E
(
U(λ0)

)
, ∀µ ∈ V (µ0), ∀t ∈ T (f, µ), ‖t‖ ≤ M ; and E

(
U(λ0)

)
is bounded:

∀f ∈ E(U(λ0)), ‖f‖ ≤ N ;

(b) g is (L1.α1, L2.α2)-Hölder in E
(
U(λ0)

)
× {λ0};

(c) α1 = β and h > 2n2l1.

Then, in a neighborhood of (λ0, µ0), the solution of (TNPr) is unique and satisfies

the following Hölder condition

d
(
f(λ1, µ1), f(λ2, µ2)

)
≤ k1d

α2/β(λ1, λ2) + k2d
δ/β(µ1, µ2),
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where k1 and k2 are positive constants depending on h, β, n, δ, etc.

Proof Taking into account Lemma 3.5, it suffices to check only assumptions (ii)

and (A1) of Theorem 2.1 (assumption (iii) is satisfied with any m ≥ 0, γ ≥ 0).

For any F1 = 〈t, f1 − h〉 we take F2 = 〈t, f2 − h〉. Then

‖F1 − F2‖ ≤ 〈t, f1 − f2〉 ≤ M‖f1 − f2‖.

Hence

〈T (h, µ), f1 − h〉 ⊆ 〈T (h, µ), f2 − h〉+ M‖f1 − f2‖B(0, 1),

i.e. assumption (ii) is fulfilled with n2 = M and δ2 = 1. Similarly, it is not hard

to see that (A1) is satisfied with θ = 0, n4 = nN, δ4 = δ, n3 = 0 and δ3 is any

nonnegative numbers. �

Remark 3.3 In Adly et al. (in press) the special case of our traffic network

problem, where T is single - valued, is investigated. Instead of (Ar) a strong

monotonicity of T (which is stricter than (Ar)) is assumed. The other assumptions

are similar to ours, but imposed globally, not only in E(U(λ0)) as in Corollary

3.6. Furthermore, replacing our assumption (c), another technical assumption is

used in Adly et al. (in press), using the lower bound f0 > 0 of the norm ‖v‖ of

all v ∈ A \ {0} (see Remark 3.1, Adly et al., in press), where A is assumed to be

convex and contain 0. This assumption is mistaken, since there is no such convex

set. Moreover, Adlly et al. (in press) uses the distance Hr instead of our distance

ρ. Hence, the obtained H�older condition for the solution set is weaker than the

conclusion of Corollary 3.6 and cannot imply the solution uniqueness.
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